
Funkcije kompleksne promenǉive

Skup kompleksnih brojeva oznaqavamo sa C. ǋegovi elementi su oblika z = x + iy, gde su
x = Re z i y = Im z brojevi koje redom zovemo realnim i imaginarnim delom kompleksnog broja
z, dok je i imaginarna jedinica, odre�ena sa i2 = −1.

Svakom kompleksnom broju z odgovara konjugovano kompleksni broj z̄ = x − iy. Jednostavno

dobijamo da va�i x =
z + z̄

2
i y =

z − z̄

2i
.

Kompleksne brojeve �emo grafiqki predstavǉati u kompleksnoj ravni, pri qemu �emo na osama
redom oznaqavati realne i imaginarne delove svakog broja. Preko polarnih koordinata je
x = ρ cosφ i y = ρ sinφ, gde je ρ =

√
x2 + y2 rastojaǌe broja do koordinatnog poqetka. To

rastojaǌe se jox zove i moduo kompleksnog broja, i oznaqava sa |z|. Ugao φ ∈ [0, 2π) se oznaqava
sa arg z i zovemo ga glavnim delom argumenta broja z, dok se skup Arg z = {arg z + 2kπ | k ∈ Z}
zove argument kompleksnog broja z. Kompleksan broj z = 0 nema definisan argument.

Re

Im

z = x+ iy

z̄ = x− iy

x

y

−y

ρ = |z|

φ

Trigonometrijski oblik broja z je z = ρ(cosφ+ i sinφ︸ ︷︷ ︸
cisφ

) = |z| cis(arg z). Eksponencijalna funkcija

sa izlo�iocem iφ, φ ∈ R se definixe kao

φ 7→ eiφ = cosφ+ i sinφ,

i ova funkcija ima mnoga svojstva na koja smo navikli od ,,obiqne” eksponencijalne funkcije
kao xto je ei0 = cos 0 + i sin 0 = 1,

e−iφ = cosφ+ i sin−φ = cosφ− i sinφ =
1

cosφ+ i sinφ
=

1

eiφ
,

odnosno

eiφ · eiψ = (cosφ+ i sinφ) · (cosψ + i sinψ)

= (cosφ cosψ − sinφ sinψ) + i(sinφ cosψ + cosφ sinψ)

= ei(φ+ψ),

a va�i i ei(φ+2kπ) = eiφ · e2kπ = eiφ, kao i |eiφ| = | cosφ+ i sinφ| = 1.



Eksponencijalni oblik kompleksnog broja je z = ρ · eiφ = |z|ei arg z. Ako je z1 = ρ1e
iφ1 i z2 = ρ2e

iφ2 ,
tada je z1 ·z2 = ρ1ρ2e

i(φ1+φ2), i va�i |z1 ·z2| = |z1| · |z2|, odnosno Arg (z1 ·z2) = Arg z1+Arg z2. Tako�e,
va�i zn = ρneinφ = ρ(cosnφ + i sinnφ). Formula (cosφ + i sinφ)n = cosnφ + i sinnφ je poznata kao
Moavrova formula.

1. Odrediti slede�e skupove taqaka u kompleksnoj ravni:

(1) Re z < 1;

(2)
π

4
≤ arg z <

π

2
;

(3) |z − 2 + i| = 3.

Rexeǌe.
(1) Ako zapixemo z = x+iy, onda je dati uslov mogu�e zapisati kao x < 1, xto se u kompleksnoj

ravni mo�e predstaviti kao na slici.

Re

Im

1

(2) Data oblast je oznaqena na slici.

Re

Im

2



(3) Ukoliko je z = x + iy, tada je |z − 2 + i| = 3 ekvivaletno sa |x − 2 + i(y + 1)| = 3 ⇔
(x− 2)2 + (y + 1)2 = 32, odnosno radi se o krugu sa centrom u 2− i i polupreqnikom 3.

Re

Im

2− i

2

−1

2. Odrediti slede�e skupove taqaka u kompleksnoj ravni:

(1) |z − i| ≤ 2;

(2) |z − 1| > 1;

(3) 1 ≤ |z − 1− i| < 2.

Rexeǌe.
Tra�eni skupovi taqaka su oznaqeni na slikama u nastavku.

Re

Im

−i

i

3i

3



Re

Im

1

Re

Im

1 + i

Graniqna vrednost kompleksnog niza (zn) = (xn + iyn) je kompleksan broj a, ako za svaku okolinu
taqke a va�i da se u ǌenoj spoǉaxǌosti nalazi samo konaqno mnogo qlanova tog niza. Pixemo
standardno lim

n→∞
zn = a. Niz (zn) konvergira ako i samo ako konvergiraju nizovi (xn) i (yn), i

tada va�i lim
n→∞

zn = lim
n→∞

xn + i lim
n→∞

yn.

3. Ispitati konvergenciju nizova:

(1) zn = (−1)n + i
n

n+ 1
;

(2) zn =
n

n+ i
;

(3) zn = 1 + i
(−1)n

n2
.
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Rexeǌe.
(1) Poxto je xn = (−1)n divergentan niz, to i zn divergira.

(2) Imamo najpre da je

zn =
n

n+ i
=

n(n− i)

(n+ i)(n− i)
=
n2 − in

n2 + 1
=

n2

n2 + 1
+ i

−n
n2 + 1

.

Kako je

lim
n→∞

n2

n2 + 1
= 1, i lim

n→∞

−n
n2 + 1

= 0,

to je lim
n→∞

zn = 1 + i · 0 = 1.

(3) Jasno je da je lim
n→∞

(−1)n

n2
= 0, pa je lim

n→∞
zn = 1 + i · 0 = 1.

4. Dokazati da je lim
n→∞

(
1 +

z

n

)n
= ez.

Rexeǌe. Vidimo najpre da va�i

1 +
z

n
= 1 +

x+ iy

n
= 1 +

x

n
+ i

y

n
= ρeiφ,

gde je

ρ =

√(
1 +

x

n

)2
+
( y
n

)2
=

(
1 +

2xn+ x2 + y2

n2

)1/2

,

i

tgφ =

y

n

1 +
x

n

=
y

n+ x
.

Odatle je

lim
n→∞

(
1 +

z

n

)n
= lim
n→∞

ρn · lim
n→∞

einφ = ex · eiy = ex+iy = ez,

jer je ispuǌeno

lim
n→∞

ρn = lim
n→∞

(
1 +

2xn+ x2 + y2

n2

)n
2

= lim
n→∞

(
1 +

1
n2

2xn+x2+y2

) n2

2xn+x2+y2 · 2xn+x2+y2

n2 ·n2

= e
lim

n→∞
2xn+x2+y2

2n = ex,

kao i

lim
n→∞

nφ = lim
n→∞

n · arctg y

n+ x
= lim
t→+∞

t · arctg y

t+ x

= lim
t→∞

1

1+( y
t+x )

2 ·
(
− y

(t+x)2

)
− 1
t2

= lim
t→+∞

t2y

(t+ x)2 + y2
= y.
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Videli smo kako smo definisali eksponencijalnu funkciju za argument oblika iφ, φ ∈ R.
Prirodno se ta definicija produ�ava za sluqaj kad je argument proizvoǉan kompleksan broj
z = x+ iy:

ez = ex+iy = ex · eiy = ex(cos y + i sin y).

Analogno sluqaju eksponencijalne funkcije, i sve ostale realne elementarne funkcije se mogu
uopxtiti tako da budu definisane za kompleksne vrednost argumenta z. Za neke je to uopxteǌe
krajǌe jednostavno, pa se tako npr. polinomske funkcije definixu kao

P (z) = a0z
n + a1z

n−1 + · · ·+ an−1z + a0, ai ∈ C, z ∈ C,

i, poslediqno, racionalne funkcije kao R(z) =
P (z)

Q(z)
, z ∈ Z, dok je za neke funkcije to uopxteǌe

malo suptilnije. Razmotrimo sinus i kosinus: Poxto va�i

eiφ = cosφ+ i sinφ
e−iφ = cosφ− i sinφ

}
, φ ∈ R,

to se lako izra�ava da je cosφ =
eiφ + e−iφ

2
, odnosno sinφ =

eiφ − e−iφ

2i
, za realan argument φ.

Na osnovu ovoga �emo definisati sinus i kosinus na skupu C kao

sin z =
eiz − e−iz

2i
, odnosno cos z =

eiz + e−iz

2
.

Kompleksnu funkciju �emo grafiqki najjednostavnije predstaviti preko dve kompleksne ravni,
xto �emo demonstrirati u naredna dva primera.

5. Funkcijom f(z) = z2 preslikati pravu 1 + iy, y ∈ R.

Rexeǌe. Imamo da je f(1 + iy) = (1 + iy)2 = 1 − y2 + 2iy. Ako je X = 1 − y2 i Y = 2y, onda je
f(1 + iy) = X + iY . Lako dobijamo vezu Y 2 = 4(1−X), xto predstavǉa parabolu u (X,Y ) ravni.
Na narednoj slici je grafiqki predstavǉeno dato preslikavaǌe, sa naznaqenim nekim taqkama
i ǌihovim slikama.

x

y 1 + iy

1

1 + i

1− i

X

Y

1

2i

−2i

6. Funkcijom f(z) = ez preslikati pravu 1 + iy, y ∈ R.
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Rexeǌe. Va�i f(1 + iy) = e1+iy = e1 · eiy = e(cos y + i sin y) = e cos y + ie sin y = X + iY . Iz
X = e cos y, Y = e sin y sledi da je X2 + Y 2 = e2, xto predstavǉa kru�nicu u (X,Y ) ravni. Opet
�emo grafiqki predstaviti ovo preslikavaǌe, pri qemu smo najpre utvrdili neke vrednosti i
ǌihove slike:

f(1) = e(cos 0 + i sin 0) = e,

f
(
1± π

2

)
= e
(
cos

π

2
+ i sin

π

2

)
= ±ie,

f(1 + iπ) = e(cosπ + i sinπ) = −e,
f(1 + i · 2π) = e(cos 2π + i sin 2π) = e.

x

y

1

1 + iπ
2

1− iπ
2

1 + iπ

1 + i · 2π

X

Y

e

ie

−ie

−e

Na osnovu diskusije o eksponencijalnoj funkciji, kao i prethodnog primera, vidimo da je
ez = ez+2kπi, k ∈ Z, odnosno beskonaqno mnogo taqaka (z, z±2πi, z±4πi, ...) se tom funkcijom slika
u jednu taqku ω = ez. To nam pravi problem kod klasiqnog odre�ivaǌa inverzne funkcije.

Mi �emo zato definisati takozvanu vixeznaqnu funkcije Ln(·) koja slika taqku ω u sve taqke
z takve da je ez = w. Tako definisana funkcija je uopxteǌe logaritamske funkcije Granu
funkcije Ln(·) za koju je Im(Lnω) ∈ [0, 2π) nazivamo glavnom granom logaritamske funkcije i
oznaqavamo je sa ln(·). Zapravo, imamo da va�i

Ln z = ln |z|+ i ·Arg z, z ̸= 0,

odnosno
ln z = ln |z|+ i arg z, z ̸= 0,

gde je ln(·) sa desne strane prethodnih jednakosti standardna logaritamska jednaqina realne
promenǉive.

Uopxtena stepena funkcija z 7→ za je tako�e vixeznaqna funkcija, i motivisani znaǌima iz
realnog sluqaja (xa = ea ln x), definixemo je kao za := eaLn z, z ̸= 0.
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7. Izraqunati Ln i, ln i, Ln(1 + i) i ln(1 + i).

Rexeǌe. Prema definiciji logaritamske funkcije va�i

Ln i = ln |i|+ iArg(i) = ln 1 + i
(π
2
+ 2kπ

)
= i
(π
2
+ 2kπ

)
, k ∈ Z.

Jasno je da je ln i = iπ2 . Daǉe, va�i

Ln(1 + i) = ln |1 + i|+ iArg(1 + i) = ln
√
2 + i

(π
4
+ 2kπ

)
, k ∈ Z,

odnosno ln(1 + i) = ln
√
2 + iπ4 .

8. Izraqunati ii.

Rexeǌe. Na osnovu definicije stepene funkcije i prethodnog zadatka je

ii = eiLn i = ei·i(
π
2 +2kπ) = e−(

π
2 +2kπ).

Funkcije sa kojima �emo se qesto sretati su hiperboliqke trigonometrijske funkcije. Hiper-

boliqki sinus i hiperbiliqki kosinus se redom definixu kao sh z :=
ez − e−z

2
i ch z =

ez + e−z

2
.

Osnovni identitet koji oni zadovoǉavaju je ch2 z − sh2 z = 1.

9. Dokazati da je sin ix = i shx i cos ix = chx.

Rexeǌe. Imamo da je

sin ix =
ei·ix − e−i·ix

2i
=
e−x − ex

2i
= i2 · e

x − e−x

2i
= i shx,

odnosno

cos ix =
ei·ix + e−i·ix

2
=
e−x + ex

2
= chx.

Graniqna vrednost funkcije kompleksne promenǉive se definixe sliqno kao u sluqaju graniqne
vrednosti funkcije realne promenǉive: Broj A ∈ C je graniqna vrednost funkcije f u taqki

z = a ako za svaku okolinu V taqke A, postoji probuxena okolina
◦
U taqke a, tako da va�i

f(
◦
U) ⊂ V . Tada pixemo

lim
z→a

f(z) = A.

Ako je f(z) = f(x+ iy) = u(x, y)+ iv(x, y), i z0 = x0+ iy0, onda graniqna vrednost lim
z→z0

f(z) postoji

ako postoje lim
x → x0

y → y0

u(x, y) i lim
x → x0

y → y0

v(x, y) i tada va�i

lim
z→z0

f(z) = lim
x → x0

y → y0

u(x, y) + i lim
x → x0

y → y0

v(x, y)
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Za funkciju f ka�emo da je neprekidna u taqki z = a ukoliko je lim
z→a

f(z) = f(a). Kao i u realnom

sluqaju, elementarne kompleksne funkcije su neprekidne na oblastima gde su definisane, pri
qemu vredi napomenuti da funkcije z 7→ |z|, z 7→ z̄, z 7→ Re z i z 7→ Im z nisu elementarne.

10. Ispitati da li postoji lim
z→0

f(z), ako je:

(1) f(z) =
Re (z2)

|z|2
;

(2) f(z) =
z2

|z|2
;

(3) f(x+ iy) =
x3 + y3

x2 + y2
+ i(1 + xy).

Rexeǌe. (1) Va�i

f(z) = f(x+ iy) =
Re((x+ iy)2)

|x+ iy|2
=

Re(x2 + 2xiy − y2)

x2 + y2
=
x2 − y2

x2 + y2︸ ︷︷ ︸
u(x,y)

+i · 0︸︷︷︸
v(x,y)

.

Vidimo da je u(0, y) = −1 i u(x, 0) = 1, pa lim
(x,y)→(0,0)

ne postoji, te ne postoji ni lim
z→0

f(z).

(2) U ovom primeru je

f(z) =
(x+ iy)2

x2 + y2
=
x2 − y2

x2 + y2︸ ︷︷ ︸
u(x,y)

+i · 2xy

x2 + y2︸ ︷︷ ︸
v(x,y)

,

pa poxto, kao u prethodnom primeru, lim
(x,y)→(0,0)

u(x, y) ne postoji, to ne postoji ni lim
z→0

f(z).

(3) Neka je u(x, y) =
x3 + y3

x2 + y2
. Vidimo da va�i

0 ≤
∣∣∣∣x3 + y3

x2 + y2

∣∣∣∣ ≤ x2|x|
x2 + y2

+
y2|y|
x2 + y2

≤ |x|+ |y| → 0, (x, y) → (0, 0),

odakle zakǉuqujemo da je lim
(x,y)→(0,0)

= 0.

Izvod funkcije kompleksne promenǉive

Izvod funkcije kompleksne promenǉive se definixe analogno izvodu funkcije realne

promenǉive: f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
, ako ta graniqna vrednost postoji. Ako postoji

izvod funkcije f u taqki z = z0, onda ka�emo da je funkcija f diferencijabilna u toj taqki.

Ako je funkcija f : z = x + iy 7→ u(x, y) + iv(x, y) diferencijabilna u taqki z0 = x0 + iy0, tada
postoje parcijalni izvodi funkcija u i v u taqki (x0, y0) i va�e tzv. Koxi-Rimanovi uslovi:

u′x(x0, y0) = v′y(x0, y0) i u′y(x0, y0) = −v′x(x0, y0).
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Obrnuto, ako su u i v diferencijabilne u taqki (x0, y0) i u toj taqki su ispuǌeni Koxi-
Rimanovi uslovi, tada je funkcija f : x + iy 7→ u(x, y) + iv(x, y) diferencijabilna u taqki
x0 + iy0.

Pravila diferenciraǌa (izvod zbira, proizvoda, ...) i daǉe va�e, kao i tablica izvoda

elementarnih funkcija, te je i daǉe (za)′ = aza−1, (sin z)′ = cos z, (cos z)′ = − sin z, (tg z)′ =
1

cos2 z
itd. Imamo da je ispuǌeno i (sh z)′ = ch z i (ch z)′ = sh z xto se neposredno proverava iz
definicija ovih funkcija.

Za funkciju ka�emo da analitiqka (regularna/holomorfna) u taqki z = z0 ako je diferencija-
bilna u z0 i nekoj okolini taqke z0. Neka su f i g dve analitiqke funkcije u taqki z = z0 takve
da je f(z0) = g(z0) = 0. Ako je g′(z0) ̸= 0, tada va�i analogon Lopitalovog pravila za funkcije
kompleksne promenǉive:

lim
z→z0

f(z)

g(z)
= lim
z→z0

f ′(z)

g′(z)
,

ako limes na desnoj strani postoji.

11. Ispitati diferencijabilnost funkcije f(z) u taqki z = 0, ako je:

(1) f(z) = |z|Re z;

(2) f(z) = z̄.

Rexeǌe. (1) Va�i

lim
∆z→0

f(0 + ∆z)− f(0)

∆z
= lim
x+iy→0

x
√
x2 + y2

x+ iy
= lim

(x,y)→(0,0)

x
√
x2 + y2(x− iy)

x2 + y2

= lim
(x,y)→(0,0)���

��*0
x2√
x2 + y2

− i lim
(x,y)→(0,0)���

��*0
xy√
x2 + y2

= 0,

jer je

0 ≤ x2√
x2 + y2

≤ |x| → 0, x→ 0,

odnosno

0 ≤ |xy|√
x2 + y2

≤ x2 + y2

2
√
x2 + y2

=

√
x2 + y2

2
→ 0, (x, y) → (0, 0).

Dakle, funkcija iz ovog primera jeste diferencijabilna u taqki z = 0.

(2) Ako u f(x + iy) = x − iy oznaqimo u(x, y) = x i v(x, y) = −y, onda zbog u′x ̸= v′y zakǉuqujemo
da funkcija f nije diferencijabilna u z = 0.

12. Ispitati regularnost funkcije f : C → C, ako je f(z) =


1

sin z
− 1

z
, z ̸= 0

0, z = 0

.

Rexeǌe. Svaka osnovna elementarna funkcija je analitiqka u svojoj oblasti definisanosti.
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Stoga, funkcija f(z) je regularna za z ̸= 0. Kako je

lim
z→0

f(z)− f(0)

z
= lim
z→0

1

sin z
− 1

z
z

=
z − sin z

z2 sin z

0
0=

L.P.
lim
z→0

1− cos z

2z sin z + z2 cos z

= lim
z→0

sin z

2 sin z + 4z cos z − z2 sin z
=

0
0=

L.P.
lim
z→0

cos z

6 cos z − 6z sin z − z2 cos z
=

1

6
,

pa funkcija ima izvod u z = 0. Sledi da je data funkcija regularna u celoj kompleksnoj ravni.

13. Neka je f(x+iy) = u(x, y)+iv(x, y) analitiqka za x ̸= 0. Odrediti v(x, y) ako je u(x, y) = ln |z|2.

Rexeǌe. Pre svega, va�i
u(x, y) = ln |x+ iy|2 = ln(x2 + y2),

odakle je

u′x =
2x

x2 + y2
, i u′y =

2y

x2 + y2
.

Na osnovu Koxi-Rimanovih uslova je v′y = u′x =
2x

x2 + y2
, odakle je

v(x, y) =

∫
2x

x2 + y2
dy = 2x · 1

x
arctg

y

x
+ φ(x) = 2 arctg

y

x
+ φ(x).

Odatle dobijamo da je

v′x = 2 · 1

1 +
(
y
x

)2 ·
(
− y

x2

)
+ φ′(x) = − 2y

x2 + y2
+ φ′(x).

Iz Koxi-Rimanovih uslova je v′x = −u′y, odakle je φ′(x) = 0, odnosno φ(x) = C, pa je

v(x, y) = 2 arctg
y

x
+ C.

14. Odrediti sve analitiqke funkcije f : x+ iy 7→ u+ iv takve da je v(x, y) = ex sin y + cosx sh y.

Rexeǌe. Imamo da je v′x = ex sin y−sinx sh y i v′y = ex cos y+cosx ch y. Iz Koxi-Rimanovih uslova
je u′x = ex cos y + cosx ch y, odakle je

u(x, y) =

∫
(ex cos y + cosx ch y) dx = ex cos y + sinx ch y + φ(y).

Sada je u′y = −ex sin y + sinx sh y + φ′(y), pa poxto iz Koxi-Rimanovih uslova va�i u′y = −v′x, to
jednostavno dobijamo da je φ′(y) = 0, odnosno φ(y) = C.

Dakle,

(1) f(z) = f(x+ iy) = excos y + sinx ch y + i(ex sin y + cosx sh y) + C.
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Ciǉ nam je da izrazimo f samo preko z, za xta �e nam biti potrebna odre�ena umexnost u
sre�ivaǌu izraza:

f(z) = ex(cos y + i sin y) + sinx ch y + i cosx sh y + C

= ex · eiy + eix − e−ix

2i
· e

y + e−y

2
+ i

eix + e−ix

2
· e

y − e−y

2
+ C

= ex+iy +
1

4i

(
(eix − e−ix)(ey + e−y)− (eix + e−ix)(ey − e−y)

)
+ C

= ez +
1

2i

(
eix · e−y − e−ix · ey

)
= ez +

ei(x+iy) − e−i(x+iy)

2i
+ C

= ez +
eiz − e−iz

2i
+ C = ez + sin z + C.

NAPOMENA: Poxto je u (1) za z = x ∈ R, odnosno y = 0, ispuǌeno f(x) = ex + sinx + C, i
funkcija f je cela, to se mo�e zakǉuqiti da je f(z) = ez + sin z + C.

15. Odrediti sve analitiqke funkcije f : x+ iy 7→ u+ iv takve da je u(x, y) =
sin 2x

cos 2x+ ch 2y
.

Rexeǌe. Va�i

u′x =
2 cos 2x(cos 2x+ ch 2y)− sin 2x(−2 sin 2x)

(cos 2x+ ch 2y)2
=

2 + 2 cos 2x ch 2y

(cos 2x+ ch 2y)2
,

i
u′y =

− sin 2x

(cos 2x+ ch 2y)2
· 2 sh 2y =

−2 sin 2x sh 2y

(cos 2x+ ch 2y)2
.

Iz Koxi-Rimanovih uslova je v′x = −u′y, odakle je

v(x, y) = −
∫

−2 sin 2x sh 2y

(cos 2x+ ch 2y)2
dx = − sh 2y

∫
(cos 2x+ ch 2y)′x dx

(cos 2x+ ch 2y)2
=

sh 2y

cos 2x+ ch 2y
+ φ(y).

Daǉe, iz Koxi-Rimanovih uslova je

u′x = v′y =
2 ch 2y(cos 2x+ ch 2y)− sh 2y · 2 sh 2y

(cos 2x+ ch 2y)2
+ φ′(y)

=
2 cos 2x ch 2y + 2(ch2 2y − sh2 2y)

(cos 2x+ ch 2y)2
+ φ′(y) =

2 cos 2x ch 2y + 2

(cos 2x+ ch 2y)2
+ φ′(y) = u′x + φ′(y),

odakle zakǉuqujemo da je φ′(y) = 0, odnosno φ(y) = C. Dakle, va�i

f(x+ iy) =
sin 2x

cos 2x+ ch 2y
+ i

(
sh 2y

cos 2x+ ch 2y
+ C

)
=

sin 2x+ i sh 2y

cos 2x+ ch 2y
+ Ci.

Ako se prisetimo 9. zadatka i adicionih formula, ima�emo da je

f(x+ iy) =
sin 2x+ sin 2iy

cos 2x+ cos 2iy
+ Ci =

2 sin(x+ iy) cos(x− iy)

2 cos(x+ iy) cos(x− iy)
+ Ci = tg(x+ iy) + Ci,

odnosno f(z) = tg z + Ci.
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Integral funkcije kompleksne promenǉive

Za funkciju f : [a, b] → C datu sa f(t) = u(t) + iv(t), t ∈ [a, b], integral se definixe kao

b∫
a

f(t) dt =

b∫
a

u(t) dt+ i

b∫
a

v(t) dt,

gde su u i v dve integrabilne funkcije na [a, b]. Ako je γ glatka kriva u kompleksnoj ravni,
data sa γ = {z(t) | z(t) = x(t) + iy(t), t ∈ [a, b]} i f neprekidna kompleksna funkcija definisana
na γ, tada se integral funkcije f du� krive γ definixe kao

∫
γ

f(z) dz =

b∫
a

f(z(t))z′(t) dt.

Ako su f i g integrabilne du� krive γ i α, β ∈ C, tada va�i∫
γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.

Ako je funkcija f integrabilna na krivama γ1 i γ2, i pri tome se kraj krive γ1 poklapa sa
poqetkom krive γ2, tada je ∫

γ1∪γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

U zadacima �emo uvek imati preciziranu orijentaciju krive du� koje se odre�uje vrednost
integrala. Ukoliko je kriva koja je data neka kontura C koja ograniqava oblast D, onda je
pozitivna orijentacija ona orijentacija takva da kad ,,obilazimo” konturu, oblast D uvek
ostaje sa leve strane. Suprotna orijentacija je negativna. Promena orijenatcije krive meǌa
znak integrala.

1. Izraqunati
∫
C+

Im(z) dz, gde je C = {z | z = 3eit, t ∈ [0, π/2]}.

Rexeǌe. Data kriva C je oznaqena na slici:

Re

Im

C

A

B

13



Ako je z = x+iy, tada je x = 3 cos t i y = 3 sin t, odnosno dz = (−3 sin t+i·3 cos t) dt i Im(z) = 3 sin t,
odakle je

∫
C+

Im(z) dz =

∫
>
AB

Im(z) dz =

π/2∫
0

3 sin t · 3(− sin t+ i cos t) dt

= 9

−
π/2∫
0

sin2 t dt+ i

π/2∫
0

sin t cos t dt


= 9

−
π/2∫
0

(
1

2
− cos 2t

2

)
dt+ i

π/2∫
0

sin td(sin t)


= 9

(
−
(
t

2
− sin 2t

4

)∣∣∣∣π/2
0

+ i · sin
2 t

2

∣∣∣∣π/2
0

)
= 9

(
−π
4
+
i

2

)
.

2. Izraqunati
∫
C+

(Re(z) + Im(z)) dz, gde je C = {z | |z| = 1}.

Rexeǌe. Va�i C = {eit | t ∈ [0, 2π]}, pa iz z = cos t+ i sin t sledi dz = (− sin t+ i cos t). Daǉe je

∫
C+

(Re(z) + Im(z)) dz =

2π∫
0

(cos t+ sin t)(− sin t+ i cos t) dt

= −
2π∫
0

cos t sin t dt−
2π∫
0

sin2 t dt+ i

2π∫
0

cos2 t dt+ i

2π∫
0

sin t cos t dt

= − sin2 t

2

∣∣∣∣2π
0

− 1

2

(
t− sin 2t

2

)∣∣∣∣2π
0

+
i

2

(
t+

sin 2t

2

)∣∣∣∣2π
0

+ i
sin2 t

2

∣∣∣∣2π
0

= −π(−1 + i).

Re

Im

C

1−1

i

−i

14



3. Izraqunati
∫
C−

z̄

z
dz, gde je C = {z | 1 < |z| < 2, Re(z) > 0}.

Rexeǌe. Krivu C �emo izdeliti na qetiri dela, C = C1 ∪ C2 ∪ C3 ∪ C4, kao na slici. Odatle
�e va�iti ∫

C−

z̄

z
dz = I1 + I2 + I3 + I4,

pri qemu �emo integrale I1, ..., I4 odrediti u nastavku.

Re

Im

C1
C2

C3

C4

1 2

1. C1 : Ovde �emo krivu parametrizovati kao da je orijentacija pozitivna, pa �emo to kasnije
kontrolisati znakom minus ispred integrala. Va�i z = 2eit, t ∈

[
−π
2
,
π

2

]
, odakle je dz =

2ieit, z̄ = 2e−it, pa imamo da je

I1 = −
π/2∫

−π/2

2e−it

2eit
· 2ieit dt = −2i

π/2∫
−π/2

(cos t− i sin t) dt = −2i(sin t+ i cos t)

∣∣∣∣π/2
−π/2

= −4i.

2. C2: Va�i z = it, t ∈ [−2,−1], odakle je dz = i dt, z̄ = −it. Daǉe je

I2 =

−1∫
−2

−it
it

· i dt = −i
−1∫

−2

dt = −i.

3. C3: z = eit, t ∈
[
−π
2
,
π

2

]
, odakle je dz = ieit dt i z̄ = e−it, pa je

I3 =

π/2∫
−π/2

e−it

eit
· ieit dt = i

π/2∫
−π/2

(cos t− i sin t) dt = i(sin t+ i cos t)

∣∣∣∣π/2
−π/2

= 2i.

4. C4: Va�i z = it, t ∈ [1, 2], pa je, kao u drugom sluqaju,

I4 =

2∫
1

−it
it

· i dt = −i
2∫

1

dt = −i.

15



Konaqno, va�i ∫
C−

z̄

z
dz = −4i− i+ 2i− i = −4i

4. Izraqunati
∫
C+

Re(z) dz, ako je C granica oblasti D = {x+ iy | x2 + y2 < −2x, x2 + y2 < 2y}.

Rexeǌe.

Vidimo najpre da je

x2 + y2 < −2x ⇔ (x+ 1)2 + y2 < 1,

odnosno
x2 + y2 < 2y ⇔ x2 + (y − 1)2 < 1.

Oblast D je oznaqena na slici. Granicu C mo�emo
podeliti na dva dela, C = C1 ∪ C2, tako da je

I =

∫
C+

Re(z) dz = I1 + I2,

gde su I1 i I2 vrednosti integrala du� kriva C1 i C2.

Re

Im

C1

C2

i

−1

D

1. C1: Imamo da je x = −1 + cos t, y = sin t, t ∈
[
0,
π

2

]
, odnosno z = −1 + cos t + i sin t, odakle je

dz = (− sin t+ i cos t) dt i Re(z) = −1 + cos t. Odatle sledi

I1 =

π/2∫
0

(−1 + cos t)(− sin t+ i cos t) dt =

π/2∫
0

(sin t− sin t cos t− i cos t+ i cos2 t) dt

=

(
− cos t− sin2 t

2
− i sin t+

i

2

(
t+

sin 2t

2

))∣∣∣∣π/2
0

=
1

2
+ i
(π
4
− 1
)

2. C2: Va�i x = cos t, y = 1 + sin t, odnosno z = cos t + i(1 + sin t), t ∈
[
π,

3π

2

]
, odakle je dz =

(− sin t+ i cos t) dt i Re(z) = − cos t, pa va�i

I2 =

3π/2∫
π

cos t(− sin t+ i cos t) dt =

(
− sin2 t

2
+
i

2

(
t+

sin 2t

2

))∣∣∣∣3π/2
π

=
1

2
+ i

π

4
.(2)

Na osnovu prethodnih rezultata, dobijamo da je

I = I1 + I2 = 1 + i
(π
2
− 1
)
.
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Singularne taqke kompleksne funkcije i reziduumi

Taqke u kojima funkcija f(z) nije analitiqka nazivaju se singularnim taqkama. Taqka z0
je izolovana singularna taqka ili izolovani singularitet funkcije f(z) ako je ta funkcija
analitiqka u svim taqkama neke okoline taqke z0 sem u samoj taqki z0. Izolovani singularitet
z0 je:

• otkloǌiv singularitet ako je lim
z→z0

f(z) = a ̸= ∞;

• pol ako je lim
z→z0

f(z) = ∞;

• esencijalni singularitet ako lim
z→z0

ne postoji.

Pol z0 je pol reda n ako je lim
z→z0

(z − z0)
nf(z) = w0 ̸= 0. Pol 1. reda se naziva i prostim polom.

Neka je z0 izolovani singularitet funkcije f(z). Reziduum
funkcije f(z) u taqki z0 se definixe kao

Res
z=z0

f(z) =
1

2πi

∫
C+

f(z) dz,

gde je C kontura koja ograniqava oblast u kojoj se nalazi
taqka z0, a f(z) je analitiqka u svim taqkama neke oblasti
koja sadr�i C, sem u taqki z0. Iz prethodne formule di-
rektno sledi da je∫

C+

f(z) dz = 2πiRes
z=z0

f(z).

C

Re

Im

z0

Va�i i opxtije od prethodnog: Ako su z1, ..., zn svi singulariteti iz oblasti koju ograniqava
kontura C, tada je ∫

C+

f(z) dz = 2πi

n∑
k=1

Res
z=zk

f(z).

Vidimo da nam prethodna formula omogu�ava da izraqunamo neke integrale funkcije komplek-
sne promenǉive preko reziduuma. Bilo bi zgodno ako bismo mogli nekako i same reziduume da
raqunamo. Na sre�u, mo�emo:

• Ako je z0 otkloǌiv singularitet, onda je Res
z=z0

f(z) = 0;

• Ako je z0 pol reda n, onda je Res
z=z0

f(z) =
1

(n− 1)!
lim
z→z0

[(z − z0)
nf(z)]

(n−1).

Specijalno, za n = 1 je Res
z=z0

f(z) = lim
z→z0

(z − z0)f(z).

5. Izraqunati
∫
C+

z dz

(z2 − 1)2(z2 + 1)
, ako je C = {x+ iy | x2 + y2 = 2x+ 2}.

Rexeǌe. Najpre, iz x2 + y2 = 2x + 2 ⇔ (x − 1)2 + y2 = 3 zakǉuqujemo da je C kru�nica u
kompleksnoj ravni kao na datoj slici.
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Re

Im

C

i

−i

1

Vidimo da funkcija f(z) =
z

(z2 − 1)2(z2 + 1)
ima singularitete u taqkama z1 = 1, z2 = i, z3 = −i i

z4 = −1, me�utim, taqka z4 ne pripada delu ravni ograniqenom konturom C. Za preostale taqke
je jasno da su u pitaǌu polovi.

1◦ Va�i lim
z→1

(z − 1)f(z) = lim
z→1

z

(z − 1)(z + 1)2(z2 + 1)
= ∞, pa taqka z1 = 1 nije pol 1. reda. Sa

druge strane, iz

lim
z→1

(z − 1)2f(z) = lim
z→1

z

(z + 1)2(z2 + 1)
=

1

8
̸= 0,

sledi da je z1 = 1 pol 2. reda. Reziduum raqunamo po formuli:

Res
z=1

f(z) =
1

(2− 1)!
lim
z→1

(
(z − 1)2f(z)

)′
= lim
z→1

(
z

(z + 1)2(z2 + 1)

)′

= lim
z→1

(
1

2
· (z + 1)2 − (z2 + 1)

(z + 1)2(z2 + 1)

)′

=
1

2
lim
z→1

(
1

z2 + 1
− 1

(z + 1)2

)′

=
1

2
lim
z→1

(
− 2z

(z2 + 1)2
+

2

(z + 1)3

)
= −1

8
.

2◦ Va�i lim
z→i

(z− i)f(z) = lim
z→i

z

(z2 − 1)2(z + i)
=

i

4 · 2i
=

1

8
̸= 0, odakle zakǉuqujemo da je z2 = i pol

1. reda i va�i Res
z=i

f(z) =
1

8
.

3◦ Va�i lim
z→−i

(z + i)f(z) = lim
z→−i

z

(z2 − 1)2(z − i)
=

−i
4 · (−2i)

=
1

8
̸= 0, odakle zakǉuqujemo da je

z3 = −i pol 1. reda i va�i Res
z=−i

f(z) =
1

8
.

Na osnovu prethodnog zakǉuqujemo da va�i∫
C+

z dz

(z2 − 1)2(z2 + 1)
= 2πi

(
Res
z=1

f(z) + Res
z=i

f(z) + Res
z=−i

f(z)

)
= 2πi

(
−1

8
+

1

8
+

1

8

)
=
πi

4
.

6. Izraqunati
∫
C+

z2 dz

(z2 − 1)(z − 1)2
, ako je C kontura koja ne sadr�i taqke 1 i −1.
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Rexeǌe. Singularne taqke podintegralne funkcije f(z) =
z2

(z − 1)3(z + 1)
su z1 = 1 i z2 = −1. U

zavisnosti od same konture, svaka od tih taqaka mo�e ali i ne mora pripadati oblasti D koju
zatvara kontura C. Mogu�e situacije su predstavǉene na slici.

Re

Im

−1 1Re

Im

−1 1

Re

Im

−1 1Re

Im

−1 1

Svakako je jasno da su obe taqke polovi, pa �emo najpre da odredimo reziduume za obe taqke.
1◦ z1 = 1: Va�i

lim
z→1

(z − 1)3f(z) = lim
z→1

z2

z + 1
=

1

2
̸= 0,

odakle sledi da je z1 = 1 pol 3. reda. Stoga, imamo da je

Res
z=1

f(z) =
1

(3− 1)!
lim
z→1

(
(z − 1)3 · z2

(z − 1)3(z + 1)

)′′

=
1

2
lim
z→1

(
z2

z + 1

)′′

=
1

2
lim
z→1

(
z2 + 2z

(z + 1)2

)′

= lim
z→1

1

(z + 1)3
=

1

8
.

2◦ z2 = −1: Na osnovu

lim
z→−1

(z + 1)f(z) = lim
z→−1

z2

(z − 1)3
= −1

8
̸= 0

sledi da je z2 = −1 pol 1. reda, te je Res
z=−1

f(z) = −1

8
.

Za vrednost tra�enog integrala sada razlikujemo slede�a qetiri sluqaja, u skladu sa
diskusijom sa poqetka rexeǌe:

1. z1, z2 ∈ D: Na osnovu Koxijeve teoreme o reziduumima, va�i∫
C+

z2 dz

(z2 − 1)(z − 1)2
= 2πi

(
1

8
− 1

8

)
= 0.

2. z1, z2 /∈ D: U ovom sluqaju (na osnovu Koxijeve teoreme) vrednost integrala je 0.

3. z1 /∈ D, z2 ∈ D: Sada je
∫
C+

z2 dz

(z2 − 1)(z − 1)2
= 2πi

(
−1

8

)
= −πi

4
.

4. z1 ∈ D, z2 /∈ D: Sada je
∫
C+

z2 dz

(z2 − 1)(z − 1)2
= 2πi

(
1

8

)
=
πi

4
.
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7. Izraqunati
∫
C+

ez dz

ch z
, ako je C = {x+ iy | |x|+ |y| = 2}.

Rexeǌe. Odredimo prvo singularne taqke: Iz ch z = 0 ⇔ ez + e−z

2
= 0 dobijamo da je e2z = −1,

odakle je 2z = Ln(−1) = ln | − 1|+ iArg(−1) = i(π + 2kπ), odnosno z = i
(π
2
+ kπ

)
, k ∈ Z. Oblasti D

koju zatvara kriva C pripadaju taqke z1 =
π

2
i i z2 = −π

2
i.

Re

Im

C

2i

−2i

2−2

π
2 i

−π
2 i

Obe taqke su polovi prvog reda jer va�i

lim
z→π

2 i

(
z − π

2
i
)
f(z) = lim

z→π
2 i

z − π
2 i

ch z
· ez = i lim

z→π
2 i

z − π
2 i

ch z

0
0=

L.P.
i lim
z→π

2 i

1

sh z
= 1,

odnosno

lim
z→−π

2 i

(
z +

π

2
i
)
f(z) = lim

z→−π
2 i

z + π
2 i

ch z
· ez = −i lim

z→−π
2 i

z + π
2 i

ch z

0
0=

L.P.
−i lim

z→−π
2 i

1

sh z
= 1,

pa va�i Res
z=π

2 i
f(z) = Res

z=−π
2 i
f(z) = 1, odnosno

∫
C+

ez dz

ch z
= 2πi(1 + 1) = 4πi.

8. Izraqunati
∫
C−

dz

z2 sin z
, ako je C = {z | |z| = 1}.

Rexeǌe. Najpre, imamo

sin z = 0 ⇔ eiz − e−iz

2
= 0 ⇔ e2iz − 1 = 0 ⇔ 2iz = Ln(1) = ln 1 + iArg(1) = i · 2kπ, k ∈ Z,

pa dobijamo da je z = kπ, k ∈ Z. Jedino z = 0 pripada oblasti koju zatvara kontura C, i to je
ujedno i jedina singularna taqka date funkcije u toj oblasti.
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Re

Im

C

0 1

Taqka z = 0 je pol 3. reda, jer va�i

lim
z→0

z3f(z) = lim
z→0

z

sin z
= 1 ̸= 0,

a za reziduum va�i

Res
z=0

f(z) =
1

2
lim
z→0

( z

sin z

)′′
=

1

2
lim
z→0

(
sin z − z cos z

sin2 z

)′

=
1

2
lim
z→0

z sin2 z + 2z cos2 z − 2 sin z cos z

sin3 z

=
1

2
lim
z→0

z(1 + cos2 z)− 2 sin z cos z

sin3 z
=

1

4
lim
z→0

3z + z cos 2z − 2 sin 2z

sin3 z
0
0=

L.P.

1

4
lim
z→0

3 + cos 2z − 2z sin 2z − 4 cos 2z

3 sin2 z cos z
=

1

12
lim
z→0

3− 3 cos 2z − 2z sin 2z

sin2 z cos z
0
0=

L.P.

1

12
lim
z→0

6 sin 2z − 2 sin 2z − 4z cos 2z

2 sin z cos2 z − sin3 z
=

1

3
lim
z→0

sin 2z − z cos 2z

2 sin z cos2 z − sin3 z
0
0=

L.P.

1

3
lim
z→0

2 cos 2z − cos 2z + 2z sin 2z

2 cos3 z − 4 sin2 z cos z − 3 sin2 z cos z
=

1

6
.

Sada direktno sledi da je
∫
C−

dz

z2 sin z
= −2πi · 1

6
= −πi

3
.

9. Izraqunati
∫
C+

tg z

z3
, ako je C = {z | |z + 1| =

√
2}.

Rexeǌe. Singularne taqke podintegralne funkcije f(z) =
sin z

z3 cos z
dobijamo iz uslova z3 cos z =

0. Imamo z1 = 0, dok ostale tra�imo iz uslova cos z = 0 ⇔ eiz + e−iz

2
= 0 ⇔ e2iz = −1, odakle

je z =
1

2
(π + 2kπ) = π

2 + kπ, k ∈ Z. Nova singularna taqka koja pripada oblasti koju zatvara

kontura C je z2 = −π
2 . Obe taqka su polovi (zaxto?), pri qemu je z1 = 0 pol 2. reda:

lim
z→0

z2 · f(z) = lim
z→0

sin z

z
· 1

cos z
= 1 ̸= 0.
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Daǉe je

Res
z=0

f(z) = lim
z→0

(
z2 · tg z

z3

)′

= lim
z→0

(
sin z

z cos z

)′

= lim
z→0

z − sin z cos z

z2 cos2 z
0
0=

L.P.
lim
z→0

sin2 z

z cos2 z − z2 sin 2z
2

=
0
0=

L.P.
lim
z→0

2 sin z cos z

cos2 z − 2z sin z cos z − z sin 2z − z2 cos 2z
= 0.

Taqka z2 = −π
2 je pol 1. reda jer je ispuǌeno

lim
z→−π

2

(
z +

π

2

) tg z
z3

= lim
z→−π

2

sin z

z3
·
z + π

2

cos z

0
0=

L.P.

8

π3
lim

z→−π
2

1

− sin z
=

8

π3
̸= 0,

pa je i Res
z=−π

2

f(z) =
8

π3
.

Konaqno, vrednost tra�enog integrala je∫
C+

tg z

z3
= 2πi

(
0 +

8

π3

)
=

16i

π2
.

Re

Im

C

−1

−π
2

√
2− 1
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